Carbon exchanges and their responses to temperature and precipitation in forest ecosystems in Yunnan, Southwest China

Xuehai Fei a,b,c, Qinghai Song a,b,⁎, Yiping Zhang a,b,⁎, Yuntong Liu a,b, Liqing Sha a,b, Guirui Yu h, Leiming Zhang h, Changqun Duan i, Yun Deng a,d, Chuansheng Wu a,e, Zhiyun Lu a,e, Kang Luo a,c,e, Aiguo Chen a,f, Kun Xu a,g, Weimei Liu a,g, Hua Huang a,g, Yanqi Jia a,b,c, Ruiwu Zhou a,b,c, Jing Li a,b,c, Youxing Lin a,b,c, Yiguo Zhou a,b,c, Yane Fu a,c, Xiaolong Bia,c, Xianhui Tang a,b,c, Jianhui Tang a,b,c, Wenjun Zhu a,b, John Grace j

Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
b Global Change Ecology Group, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun 666303, China
c University of Chinese Academy of Sciences, Beijing 100049, China
d Xishuangbanna Station for Tropical Rainforest Ecosystem Studies, Menglun, Xishuangbanna, Yunnan 666303, China
f Yunnan University, Kunming 650091, China
j School of GeoSciences, The University of Edinburgh, Edinburgh EH9 3FF, UK

Highlights
• All four ecosystems were carbon sinks although contrasting seasonality of NEP.
• Relationship between NEP and GPP should be parabolic rather than linear.
• Path/redundancy analysis were applied to identify patterns of controls on C fluxes.
• Controls differed: T reduced NEP in rainforest, while P increased NEP in savanna.
• Variations in NEP were more sensitive to T than P in Yunnan’s forest ecosystems.

Abstract
Forest ecosystems play an increasingly important role in the global carbon cycle. However, knowledge on carbon exchanges, their spatio-temporal patterns, and the extent of the key controls that affect carbon fluxes is lacking. In this study, we employed 29-site-years of eddy covariance data to observe the state, spatio-temporal variations and climate sensitivity of carbon fluxes (gross primary productivity (GPP), ecosystem respiration (Reco), and net ecosystem carbon exchange (NEE)) in four representative forest ecosystems in Yunnan. We found that 1) all four forest ecosystems were carbon sinks (the average NEE was −3.40 tC ha⁻¹ yr⁻¹); 2) contrasting seasonality of the NEE among the ecosystems with a carbon sink mainly during the wet season in the Yuanjiang savanna ecosystem (YJ) but during the dry season in the Xishuangbanna tropical rainforest ecosystem (XSBN), besides an equivalent NEE uptake was observed during the wet/dry season in the Ailaoshan subtropical evergreen broad-
1. Introduction

Terrestrial ecosystems have a net carbon uptake from the atmosphere of 2.6 ± 1.2 Pg C yr⁻¹ and therefore play a crucial role in the global carbon cycle by mitigating global warming (IPCC, 2013). A large portion of this uptake is absorbed by forest ecosystems, and the global spatio-temporal patterns of carbon exchange and their driving factors, especially in forest ecosystems, are the core of the global carbon cycle under climate change (Chapin et al., 2011; Heimann and Reichstein, 2008; IPCC, 2013; Le Quéré et al., 2016; Reichstein et al., 2013; Yu et al., 2014b). Therefore, exploring carbon exchanges and their responses to environmental factors is very important for understanding and projecting the carbon cycle and for providing information to policy-makers (Le Quéré et al., 2016). Such knowledge underpins the Paris Agreement, which aims to keep the rise in temperature well below 2 °C and calls for renewed efforts to limit global warming below 1.5 °C (Anderson and Peters, 2016; UNFCCC, 2015). So far, the most-cost-effective approach to mitigate anthropogenic C emission is via ecosystem carbon uptake (IPCC, 2013). However, there remains a lack of knowledge on carbon fluxes and their spatio-temporal patterns, and the underlying mechanisms of critical factors impacting carbon fluxes.

The spatial representation of carbon fluxes is currently very limited and requires further comprehensive and cooperative research (Baldocchi, 2008; Yu et al., 2014b). Most recent studies have focused not only on the actualities of carbon exchange between forest ecosystems and the atmosphere, but also on the response of carbon fluxes to biophysical controls (Baldocchi et al., 2017; Beringer et al., 2016; Frank et al., 2015; Grace et al., 2014; IPCC, 2013; Reichstein et al., 2013; Yu et al., 2016). Many results showed that the decreased precipitation and increased temperature under climate change scenarios will decrease these ecosystems' carbon sinks (Chen et al., 2013; Ciais et al., 2005; Knapp et al., 2002; Weltzien et al., 2003; Wu et al., 2011), although a high degree of spatio-temporal heterogeneity exists, with marked influences from the topography, soil, vegetation and environmental factors in forest ecosystems (Baldocchi, 2008; Luysaert et al., 2010; Luysaert et al., 2008; Tagesson et al., 2016; Yu et al., 2014a; Yu et al., 2008). Undoubtedly, carbon exchanges and their controls differ between locations, with some ecosystems being especially vulnerable to climate change (Chen et al., 2013; IPCC, 2013; Jia et al., 2016; Mekonnen et al., 2016; Tagesson et al., 2016; Wu et al., 2011). Furthermore, biophysical-based models that predict the behavior of the global carbon cycle require much more knowledge derived from in situ research to drive and validate their results. National and global networks provide such data over time scales of years and even decades, and ~900 observation stations were present in FLUXNET by the end of 2016 (http://fluxnet.fluxdata.org/sites/). Nevertheless, the spatio-temporal representativeness of flux recording is limited in many areas of the world (Pan et al., 2011; CR Yu et al., 2013a) despite attempts to improve our understanding of the global carbon exchange (Baldocchi, 2003; Baldocchi et al., 2001a; Baldocchi et al., 1996; Ciais et al., 2005; Falge et al., 2002; Law et al., 2002; Song et al., 2014; Yu et al., 2006; Zhang et al., 2010; Zhao et al., 2006). Clearly, we must comprehensively research carbon fluxes at a variety of scales (individuals, populations, communities, ecosystems, landscapes and regions) and infer their responses to climate change. Such studies should help to predict climate change, and the determined effects should also be helpful for regional carbon management to mitigate and adapt to climate change (Baldocchi, 2008; Wu et al., 2011; Yu et al., 2014b).

Southwest China has the second largest forest carbon biomass storage (Fang et al., 2001) and the largest carbon sink in China (Fiao et al., 2009). However, this area is subject to climate change and may be vulnerable. Models suggested that Yunnan Province (the main portion of Southwest China) will experience decreased precipitation and increased temperatures (Gao et al., 2012; Qin et al., 2005). Therefore, it is imperative to understand the carbon exchanges and their responses to climate change in this region. An eddy covariance and meteorological observation system with long-term recording capability was applied at four contrasting forest ecosystems (YJ, XSNB, ALS, and LJ) along a large temperature and precipitation gradient in Yunnan to explore the carbon dynamics and their response to changing climate. The specific objectives of this study were to 1) quantify the carbon exchange state (gross primary productivity (GPP), ecosystem respiration (Reco), and net ecosystem carbon exchange (NEE)) and its spatio-temporal patterns; 2) provide data to analyze the relationship among Reco, NEE and GPP; 3) identify the influence of temperature (T) and precipitation (P) on the NEE, and 4) predict likely changes in carbon sinks under climate change. The over-arching aims are to predict the responses of forest ecosystems to climate change and thus contribute to the development and implementation of policies for regional ecosystem protection.

2. Materials and methods

2.1. Experimental sites

Four representative forest ecosystems, namely, the Yuanjiang savanna ecosystem (YJ), Xishuangbanna tropical rainforest ecosystem (XSNB), Ailaoshan subtropical evergreen broad-leaved forest ecosystem (ALS), and Lijiang subalpine cold-temperate coniferous forest ecosystem (LJ) (Fig. 1), were chosen to study the carbon exchanges and responses to climatic change in Yunnan, Southwest China.

The mean annual temperature over the study period (MAT) in the YJ, XSNB, ALS, and LJ was 24.3, 21.4, 11.7, and 7.9 °C, respectively, and the mean annual precipitation (MAP) was 734, 1415, 1728, and 1095 mm, respectively (Table 1). The climate is influenced by the southwestern monsoon and the Tibetan Plateau, and 80% of the MAP occurs during the wet season (May–October) in each of the four locations. The geographical location, altitude, dominant species, biophysical factors, and soil physical and chemical properties are listed in Table 1, and further information regarding the topography, climate, solar radiation, vegetation, and soil properties can be viewed in previous work (Cao et al.,
Fig. 1. Geophysical location (a) and overview (b) of the research ecosystems in Yunnan, Southwest China: Yuanjiang semi-arid savanna ecosystem (YJ, special terrain and vegetation), Xishuangbanna tropical rainforest ecosystem (XSBN, northern edge of the India-Malaysia tropical rainforest), Ailaoshan subtropical evergreen broad-leaved forest ecosystem (ALS, boundary of the East-South Asian monsoon area), and Lijiang subalpine cold-temperate coniferous forest ecosystem (LJ, extended regions of the Tibetan Plateau). All the studied ecosystems are indicated by circles.

Table 1
Overview of the forest ecosystems (YJ, XSBN, ALS, and LJ) that were studied in this research.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Research ecosystems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecosystem type</td>
<td>YJ</td>
</tr>
<tr>
<td>Geographical location</td>
<td>23°28′26″ N, 102°10′39″ E</td>
</tr>
<tr>
<td>Altitude (m)</td>
<td>550</td>
</tr>
<tr>
<td>MAT (°C)</td>
<td>24.3</td>
</tr>
<tr>
<td>MAP (mm)</td>
<td>734</td>
</tr>
<tr>
<td>R/A ratio</td>
<td>81%</td>
</tr>
<tr>
<td>SVWC in rainy season (%)</td>
<td>10–35</td>
</tr>
<tr>
<td>SVWC in dry season (%)</td>
<td>6–20</td>
</tr>
<tr>
<td>Soil type</td>
<td>Dry-red soil</td>
</tr>
<tr>
<td>Humus layer (cm)</td>
<td>-</td>
</tr>
<tr>
<td>pH of the soil</td>
<td>7.3</td>
</tr>
<tr>
<td>Organic carbon (g kg⁻¹)</td>
<td>12.1</td>
</tr>
<tr>
<td>Total nitrogen (g kg⁻¹)</td>
<td>1.0</td>
</tr>
<tr>
<td>Total phosphorus (g kg⁻¹)</td>
<td>0.30a</td>
</tr>
<tr>
<td>C/N ratio</td>
<td>12.1</td>
</tr>
<tr>
<td>Vegetation</td>
<td>Savanna</td>
</tr>
<tr>
<td>Dominant species</td>
<td>Lannea coromandelica, Polyalthia suberosa, Heteropogon contortus</td>
</tr>
<tr>
<td>Average canopy height (m)</td>
<td>4–6</td>
</tr>
<tr>
<td>LAI</td>
<td>1.5</td>
</tr>
<tr>
<td>Biomass (t ha⁻¹)</td>
<td>>5</td>
</tr>
<tr>
<td>Litterfall (t ha⁻¹)</td>
<td>4.31f</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: MAT: mean annual temperature, MAP: mean annual precipitation, R/A ratio: ratio of the precipitation during the rainy season to the annual precipitation, and SVWC: soil volumetric water content. The references were cited from: a (Liu et al., 2007); b (Chan et al., 2006); c (Qiao et al., 2013); d (Qing, 2004); e (HX Yu et al., 2013b); f (Fei et al., 2017); g (Tan et al., 2010); h (Nizami et al., 2017); and i (Tan et al., 2011).
2006; Chan et al., 2006; Fei et al., 2016; Huang et al., 2017; Liu et al., 2007; Liu et al., 2002; Song et al., 2017; YP Zhang et al., 2006).

2.2. Eddy covariance and meteorological data

2.2.1. Flux and meteorological data

An open path eddy covariance (OPEC) system, which provides a direct, continuous and simultaneous measurement of scalar fluxes (e.g., energy, water and carbon fluxes) and environmental factors with a high time-resolution dataset between the ecosystem and atmosphere (Aubinet et al., 2001; Baldocchi et al., 2001a; Baldocchi et al., 1996), was applied to simultaneously measure the carbon fluxes and climatic variables in all four of the studied ecosystems (YJ, XSBN, ALS, and LJ) beginning in 2013, 2002, 2008, and 2014, respectively, to explore the carbon exchanges and their responses to critical climatic factors. The data that were used in this study spanned from May 2013 to 2016, 2003 to 2016, 2009 to 2016, and August 2014 to 2016 in the YJ, XSBN, ALS, and LJ, respectively. All the data in the tables and figures are multiyear averaged values.

The characteristics and parameters of the four sets of OPEC systems and routine meteorological instruments in this research (Table S1) are as follows: 1) the OPEC system consisted of a high-frequency (10 Hz) open-path CO2/H2O infrared gas analyzer and a tri-axial sonic anemometer; 2) a solar radiometer measured the global radiation (Rg); 3) a profile measurement system was employed to observe photosynthetically active radiation (PAR); 4) various instruments were installed to measure the relative humidity (RH) and air T (Tair); 5) the profiles of the soil moisture and soil T (Tsoil) were measured; and 6) rainfall was measured by using a rain gauge at the top of each flux tower. More details regarding the OPEC systems and other meteorological instruments are provided in Table S1. The sampling frequencies of the flux and meteorological data were 10 Hz and 0.5 Hz, respectively. All the data were continuously collected by using Campbell loggers (CR1000/CR3000/CR5000, Campbell Scientific Inc., Logan, UT, USA) beginning in May 2013, October 2002, September 2008, and August 2014 in the YJ, XSBN, ALS and LJ, respectively.

2.2.2. LAI and litterfall

In each of our research ecosystems: 1) an LAI-2200 plant canopy analyzer (Li-Cor Inc., USA) was used to measure the monthly LAI at the end of each month (8 plots × 4 repeats) and data were processed with the FV2200 software (Li-Cor Inc., USA), and 2) 25 randomly distributed litterfall traps were used to capture the above-ground litterfall, which was collected on the last day of every month, sorted, dried (at 65 °C to a constant weight) and separated into components (leaves, branches, flowers, fruits, and others).

2.3. Data processing and statistical analysis

2.3.1. Data processing

Quality assessment and control (QA/QC) was applied according to the standard protocols that were recommended by several authors (Baldocchi et al., 2001a; Reichstein et al., 2005; Yu et al., 2006). FLUXNET, as well as ChinaFLUX, has developed a series of standard QA/QC methods to control and ensure the quality of flux data. For details regarding the flux data QA/QC and post-processing procedures in this study, see Reichstein et al. (2005) and Yu et al. (2006). Here, we briefly introduce the data processing flow: 1) three-dimensional/triple-coordinate rotation was applied to align the horizontal wind to the mean wind direction for instrument tilt or irregularities in the terrain effects on airflow (Baldocchi et al., 2000; Tanner and Thurtell, 1969; Wilczak et al., 2001; Zhu et al., 2005); 2) WPL calibration was used to correct flux data for air-density variations from the transfer of heat and water vapor (Lee and Massman, 2010; Webb et al., 1980); 3) the Fv value between the EC height and ground was calculated (Baldocchi et al., 1996; Carrara et al., 2003; Hollinger et al., 1994; Zha et al., 2004); 4) data that were collected during rainy periods were eliminated (Yu et al., 2006); 5) outliers were identified and rejected (Reichstein et al., 2005), and absolute NEE values > 50 μmol m−2 s−1 were discarded; 6) negative nighttime data were rejected; 7) a friction velocity (u*) threshold (0.2 in the YJ, ALS, and LJ and 0.12 in the XSBN) was applied to screen flux data (Falge et al., 2001; Reichstein et al., 2005; Saleska et al., 2003); and 8) marginal distribution sampling (Reichstein et al., 2005), which effectively combined the mean diurnal variation (MDV) and the look-up table method (Falge et al., 2001; Papale et al., 2006; Reichstein et al., 2005), was applied to fill in any gaps, and an online procedure that was recommended by FLUXNET and EUROFLUX (http://www.bgc-jena.mpg.de/~MDIwork/eddyproc/index.php) was used to partition the flux data.

2.3.2. Carbon exchange components and calculation

The Net Ecosystem Exchange (NEE) consists of two components, namely, the turbulent eddy flux (Ft) and the storage flux (Fs) (Aubinet et al., 2001; Baldocchi et al., 1996; Hollinger et al., 1994; Lee et al., 2006), as expressed in Eq. (1):

\[
\text{NEE} = F_t + F_s = \rho \overline{w} c + \frac{\Delta c}{\Delta t} z_r
\] \hspace{1cm} (1)

where Ft represents the turbulent eddy flux that is transported above the EC system height (13.9, 48.8, 34, and 60 m in the YJ, XSBN, ALS, and LJ, respectively) and the atmosphere, and Fs indicates the storage flux under the plane of the EC system and ground surface. A single-point (i.e., EC) method was applied to measure Ft at the measurement height (zr) of the fluxes; ρ, w, and c represent the air density, vertical wind velocity, and target scalar concentration (CO2 concentration in this case), respectively; the primes denote fluctuations from the average; and the overbar signifies a time average (30 min in this case). Δt is the variation over a 30-min period at height zr, zr is the height of the EC system, and Δt is the time interval (1800 s in this case). By convention, NEE equals the negative net ecosystem productivity (NEP). A negative NEE (or positive NEP) indicates that the ecosystem acts as a carbon sink and fixes carbon from the atmosphere, i.e., photosynthesis exceeds all respiratory losses.

The ecosystem respiration (Reco) and gross primary productivity (GPP) can be derived from the eddy flux (Baldocchi et al., 2001a; Gilmanov et al., 2007; Reichstein et al., 2005; Yu et al., 2006) as expressed in Eqs. (2) and (3):

\[
R_{ec} = R_{ec, ref} \times e^{\left(\frac{1}{T_{ref} - T} - \frac{1}{T_{G}}\right)}
\] \hspace{1cm} (2)

\[
GPP = R_{ec} + (-NEE)
\] \hspace{1cm} (3)

where R_{ec} is the ecosystem respiration after Lloyd and Taylor (1994); R_{ec, ref} is the reference ecosystem respiration at the reference temperature (T_{ref}, here 10 °C); R_{ec, ref} and E_{0} are the fitted parameters; T_{0} is a constant and set to 227.13 K (−46.02 °C); and T is the measured 5-cm soil temperature in this study. The units of T_{0}, T_{ref} and T in Eq. (2) are in Kelvin. We followed the convention to express the absolute values of NEE and NEP, the gross ecosystem carbon exchange (GEE) and the GPP (i.e., NEP = −NEE, GPP = −GEE) (Baldocchi et al., 2001b; Falge et al., 2001; Goulden et al., 1996), although some authors noted that these variables do not necessarily represent the same quantity (Chapin et al., 2006; Randerson et al., 2002).

2.4. Statistical analysis

The intra-annual and seasonal variations in the meteorological data and carbon exchanges were analyzed. In addition, the coefficient of variation (CV) was analyzed to quantify the variation in the inter-annual carbon exchange. Then, path analysis was applied to suggest the direct and total effects of T, P and their comprehensive expression.
gression models were used to quantify the relationship of Tair and the
2.4.3. Regression analysis
e.g., vapor pressure deficit, VPD) on the NEP at a monthly timescale. We
then used redundancy analysis (RDA) to determine the contributions
from critical climatic factors to the NEE. Finally, regression analysis
was performed to quantify the responses of the carbon exchange (GPP, Reco, and NEE) to “the critical climatic factors (T and P)” according to the
results of RDA at a daily timescale. The details of the data analysis are as
follows.

2.4.1. Path analysis
Path analysis was first proposed by Sewall Wright, a quantitative ge-
neticist, in 1921 (Wright, 1921). It is based on the fundamental princi-
iples of multiple regression and correlation analysis but has a more
interpretive structure (Grace and Bollen, 2005). In addition, this method
is an especially useful analytic tool when the relationships (a priori
causal connections) among variables are well known (Li, 1975; Schemske
and Horvitz, 1988). Path analysis shows us not only the direct
effects of independent factors on dependent variables but also the indi-
rect and total effects (total effects = direct effects + indirect effects)
(Chen et al., 2015; Li, 1975; Schemske and Horvitz, 1988; Wootton,
1994). In addition, path analysis has been recently applied to explore the
effects of biophysical controls on ecosystem carbon exchange and/or
ET (Bassow and Bazzaz, 1998; Chen et al., 2015; Huxman et al.,
2003; Olivas et al., 2010; Saito et al., 2009; Ueyama et al., 2014; Wu
et al., 2017; Zhuang et al., 2016).

Here, we assume that the NEP was mainly controlled by T, P, and
VPD at a monthly timescale because of the critical roles of T, P, and
VPD in regulating carbon exchange (Baldocchi, 2008; Chen et al.,
2013; Jung et al., 2017; Reichstein et al., 2007; GR Yu et al., 2013a).
Then, path analysis was applied to statistically identify which climatic
drivers significantly influenced the NEE and quantify their relative im-
portance through parameterizing the standardized direct and total ef-
fects on the NEP. We first designed the path structure for the correla-
tions of P, T, and VPD with the NEP as follows: 1) T and P directly
and indirectly determine the NEP; 2) T and P jointly drive VPD; and
3) VPD directly affects the NEP. In this study, our purpose was not to ex-
plore the relative goodness of fit between different path structures, al-
though other path-structure models may be more feasible, but instead
to identify the quantitative importance of climatic factors (T, P, and
VPD) on the carbon sink. The R package sem (Fox et al., 2016) was
used to conduct path analysis, and the path coefficients (PCs) were stan-
dardized partial regression coefficients, representing the relative
strength of a given relationship, and allowed us to quantitatively com-
pare the relative influence of T, P, and VPD on the NEP.

2.4.2. Redundancy analysis to quantify the contributions
RDA provides a useful statistical method to identify the critical con-
trols and determine the further effect size for each defined critical bio-
physical factor by parsing out other factors as given constraints to
calculate its total explanatory power (De’ath and Fabricius, 2000;
Oksanen, 2015). This method was applied to quantify the contributions
of critical explanatory variables (T and P) to the response variables
e.g., NEE, as the NEE is mainly controlled by T and P (Anderson-Teixeira et al., 2011; Jung et al., 2017; Yu et al., 2010). In
this study, the R software and vegan R package were used to calculate
the RDA (Oksanen, 2015) at a monthly time scale.

2.4.3. Regression analysis
The one-factor quadratic/exponential regression and two-factor re-
gression models were used to quantify the relationship of Tair and the
soil volumetric water content (SVWC) with the carbon exchange
(GPP, Reco, and NEE) at daily timescales as follows (Reichstein et al.,
2002; Wen et al., 2010; Yu et al., 2004):
\[f(x) = ax^2 + bx + c \quad (4) \]
\[\text{Reco} = a \times \exp(bT) \quad (5) \]

The exponential model (Eq. (5)) was used to explore the effect of Tair
on Reco, and the quadratic regression model (Eq. (4)) was used to study the
responses of 1) the GPP, Reco, and NEE to SVWC and 2) the GPP and
NEE to Tair. Additionally, the two-factor regression model (Eq. (6)) was
applied to explore the interactive effect of Tair and SVWC on the GPP,
Reco, and NEE. In Eqs. (4)–(6), where a, b, and c are fitted parameters,
x represents Tair or SVWC, f(x) represents the GPP, Reco, or NEE; and T
and W represent Tair and SVWC, respectively.

3. Results

3.1. Spatiotemporal variation in carbon exchange

3.1.1. Seasonally and yearly binned mean diurnal variations in carbon exchange

Generally, the diurnal patterns of the NEP (NEP = −NEE) were con-
sistent with those of the GPP, increasing with higher solar elevation (el-
evation angle of the Sun) in the four studied forest ecosystems (YJ, XSBN, ALS, and LJ), and the half-hourly GPP and NEE peaked at midday
(12:00–13:00) and then decreased with decreasing solar elevation (Fig. 2). In contrast, the minimum Reco occurred before sunrise, after
which this value gradually increased and peaked late in the afternoon
at 16:00. These dynamics were very clear, especially in the XSBN. Inter-
estingly, the GPP and carbon-sink strength (absolute NEE values)
peaked at 12:00 in the YJ (Fig. 2a1, b1, c1) and XSBN (Fig. 2a2, b2, c2),
but the time of the GPP and NEE peak in the ALS (Fig. 2a3, b3, c3) and
LJ (Fig. 2a4, b4, c4), where T was lower and the soil water was higher
than in the YJ and XSBN (Table 1), was delayed by approximately 1–
1.5 h compared to the peak time in the YJ and XSBN.

For each ecosystem, the GPP, Reco, and NEE during the wet season
(May–October) were higher than those during the dry season (Novem-
ber–April) (Fig. 2). The diurnal magnitude of the GPP, Reco, and NEE
showed trends of XSBN > ALS > LJ > YJ, and higher GPP produced higher
Reco within the same ecosystem, suggesting that the photosynthetic ca-
pacity controlled Reco.

3.1.2. Intra-annual variations in meteorological conditions and carbon exchanges

3.1.2.1. Intra-annual variations in meteorological conditions

The detailed intra-annual analysis of the meteorological conditions in the four forest
ecosystems (Fig. 3) showed clearly that 1) the Rs and PAR peaked from
April to May in all cases (YJ, XSBN, ALS, and LJ) and that the dynamics of
the PAR were consistent with those of Rs, although the Rs and PAR
changed more dramatically in the wet season in the ALS and LJ than in
the YJ (Fig. 3a, e); 2) the dynamics of Tair and Tsoil were highly coinci-
dent: the lowest Tair and Tsoil occurred at the end of December to the
middle of January, and the highest Tair and Tsoil occurred from May to
June in the YJ, in contrast to the peaks occurring approximately one
month later (in July) in the XSBN, ALS, and LJ (Fig. 3b); 3) the multi-
annual mean VPD was 13.7, 6.3, 3.4, and 3.6 hPa in the YJ, XSBN, ALS,
and LJ, respectively (Fig. 3c), the daily VPD dramatically changed in
the YJ and peaked from April to May, and the RH dynamics contrasted
those of VPD; and 4) the SVWC at −5 cm and −40 cm consistently
changed in the four ecosystems, with the lowest SVWC occurring at the
end of the dry season (April) and the SVWC being higher during the
wet season (Fig. 3d), reflecting the fact that almost 80% of the pre-
cipitation fell during the rainy season (Fig. 3e and Table 1).
the wet season than the dry season (Fig. 4). For example, the highest GPP and Reco (almost 12 g C m\(^{-2}\) day\(^{-1}\)) occurred in the XSBN and ALS in August, and the GPP and Reco were usually correlated. The GPP and Reco ranked as follows: XSBN > ALS > LJ > YJ. The GPP in the XSBN was very high compared to the GPP in the YJ, and the lowest GPP and Reco in the XSBN (usually in December or January) approached the highest GPP and Reco in the YJ (Fig. 4a, b), which indicated that precipitation restricted photosynthesis in the YJ. In summary, the photosynthetic capacity and Reco of the tropical rainforest (e.g., XSBN) and subtropical evergreen broad-leaved forest (e.g., ALS) were more efficient than those of savanna vegetation.

A net carbon sink was observed almost daily in the ALS and LJ (Fig. 4c, d), whereas the carbon sink in the YJ mainly occurred from June to November (with a peak in August) (Fig. 4a) and showed an opposite pattern in the XSBN, in which carbon sequestration mainly occurred from the late wet season to the middle of the dry season (September–March) (Fig. 4b).

3.1.3. Seasonal and annual dynamics of the meteorological conditions and carbon exchanges

3.1.3.1. Seasonal and annual dynamics of the meteorological conditions. To sum up, \(R_{\text{g}}\), PAR, \(P\), \(T_{\text{air}}\), \(T_{\text{soil}}\), RH, and SVWC were higher during the wet season than the dry season, except for the \(R_{\text{g}}\) and PAR in the ALS and LJ (Table 2). Usually, the VPD, as in the XSBN, ALS, and LJ, was larger during the dry season than the wet season because >80% of the annual precipitation occurred during the wet season. However, the VPD showed the opposite seasonal trend in the YJ, measuring 15.2 hPa during the wet season and 12.1 hPa during the dry season (Table 2) due to a lack of rain but abundant radiation.

3.1.3.2. Seasonal and annual dynamics of the carbon exchanges. Seasonally, the GPP and Reco (i.e., carbon intake and output) during the wet season were higher than those during the dry season: the GPP was 4.69 ± 0.37, 15.38 ± 1.73, 13.37 ± 1.39, and 8.62 ± 0.77 tC ha\(^{-1}\) during the wet season and 2.21 ± 0.31, 10.09 ± 1.47, 7.31 ± 0.47, and 5.30 ± 0.42 tC ha\(^{-1}\) during the dry season, and Reco was 3.61 ± 0.34, 15.43 ± 1.90, 9.76 ± 1.28, and 6.37 ± 0.57 tC ha\(^{-1}\) during the wet season and 2.01 ± 0.31, 8.79 ± 1.67, 3.90 ± 0.54, and 3.50 ± 0.35 tC ha\(^{-1}\) during the dry season in the YJ, XSBN, ALS, and LJ, respectively. Therefore, the YJ, ALS, and LJ were carbon sinks not only during the wet season (−1.08 ± 0.35, −3.61 ± 0.77, and −2.24 ± 0.51 tC ha\(^{-1}\), respectively) but also during the dry season (−0.20 ± 0.09, −3.41 ± 0.56, and −1.81 ± 0.28 tC ha\(^{-1}\), respectively) (Fig. 5a, b). An unusual seasonal
pattern was present in the XSBN, in which a carbon sink mainly occurred during the dry season (−1.31 ± 0.56 tC ha⁻¹) but with a slight/marginal carbon source during the wet season (0.06 ± 0.51 tC ha⁻¹). The seasonality of the NEE was unremarkable in the ALS and LJ, which absorbed and fixed CO₂ nearly all year, whereas dramatic seasonal variations in the NEE were observed in the YJ and XSBN.
Nearly 84% of the NEE was achieved during the wet season in the YJ, with the opposite seasonality occurring in the XSBN.

Annually, the YJ, XSBN, ALS, and LJ were carbon sinks: the NEE values were $-1.28 \pm 0.27, -1.25 \pm 0.68, -7.02 \pm 1.05,$ and -4.05 ± 0.41 tC ha$^{-1}$ yr$^{-1}$, respectively (Fig. 5). The carbon–sink capability in the XSBN was nearly equivalent to that in the YJ, although the XSBN was the strongest in terms of photosynthesis and had the highest GPP among our research ecosystems, while the highest R_{eco} occurred during the wet/dry season. In addition, the ALS showed the strongest carbon sink.

3.1.4. Relationship between the R_{eco} and NEP with the GPP

We used linear and quadratic regression models to explore the spatial (i.e., between-site) relationship between the R_{eco} and NEP with the GPP (Fig. 6). In addition, the spatial variations in R_{eco} were highly correlated to the spatial variations in the GPP in both types of models ($P < 0.001$), but the quadratic regression equation showed a higher R^2 ($R^2 = 0.94$). In contrast, only the quadratic regression model showed significance ($P = 0.0026$) in the relationship between the spatial variations in the GPP and the NEP, when the GPP increased with the GPP when the GPP < 17.5 tC ha$^{-1}$ yr$^{-1}$; otherwise, the NEP was negatively correlated to the GPP (Fig. 6b). The spatial variations in the GPP contributed 93.5% and 40.9% to the spatial variations in the R_{eco} and NEP, respectively, according to the quadratic regression equations (Fig. 6).

3.2. Influences of critical climatic factors (T, P, and VPD) on the carbon sinks

Path analysis was used to further investigate how critical climatic factors (T, P, and VPD) influenced the NEP at a monthly scale. The results showed that the monthly variations in the NEP were jointly controlled by variations in T, P, and VPD, although with different path coefficients in the YJ, XSBN, ALS, and LJ (Fig. 7).

Overall, the monthly variations in P controlled the monthly variations in the NEP with direct effects of 0.18, $-0.20, 0.19,$ and 0.15 in the YJ, XSBN, ALS, and LJ, respectively, and total effects of 0.46, $-0.09, 0.12,$ and 0.18 in the YJ, XSBN, ALS, and LJ, respectively (Fig. 7). In addition, the monthly variations in T controlled the monthly variations in the NEP, with direct effects of 0.37, $-0.41, 0.13,$ and 0.27 in the YJ, XSBN, ALS, and LJ, respectively (Fig. 7). In addition, the direct effects of VPD on the NEP were negative in the YJ (-0.69) and XSBN (-0.17) but positive in the ALS (0.24), suggesting that the VPD was the dominant controller of the carbon sink in the YJ and was not a constraining factor in the ALS. The results suggested that the VPD (comprehensive expression of the contradiction between water and energy/T) and P were the critical controls and exhibited a dominant effect on the carbon sink in the YJ, while T was the main factor in the XSBN, ALS, and LJ. T had a strong negative effect on the NEP in the XSBN.

3.3. Quantifying the contributions from temperature and precipitation to the NEE

The RDA results showed that T and P jointly explained 39.7%, 32.2%, 25.3%, and 29.6%, T explained 3.1%, 13.8%, 10.1%, and 11.7%, and P explained 15.3%, 29.9%, 8.5%, and 10.4% of the variations in the NEE in the YJ, XSBN, ALS, and LJ, respectively (Fig. 8). T and P jointly explained >1/3 (39.7%) of the variations in the NEE in the YJ and nearly 1/3 (32.2%) in the XSBN, which indicated that the carbon sinks (NEE) in the YJ and XSBN were more easily affected by T and P than in the ALS and LJ, while the NEE in the ALS and LJ were jointly determined by T
and P (Fig. 8). Furthermore, the overlapping areas of T and P in the YJ and XSBN (21.3% and 15.5%) were larger than those in the ALS and LJ, which suggested a strong interaction between P and T in the YJ and XSBN. Overall, the variation in the NEE in the YJ and XSBN was mainly controlled by P and T, respectively, which are readily affected under climate change (warming/drought). Additionally, the RAD results demonstrated that T and P were the critical controls of the NEE in these ecosystems. Therefore, the responses of carbon exchange to T and P will be analyzed next.

3.4. Responses of carbon exchanges to temperature and precipitation

3.4.1. Responses of carbon exchanges to temperature

The one-factor quadratic and exponential models (Eqs. (4) and (6)) were applied to quantify the relationship of T_{air} with the GPP, Reco, and NEE (Fig. 9). In addition, just as the regression results showed that the GPP decreased with increasing T_{air} in the YJ but increased in the XSBN, ALS, and LJ, and R_{eco} increased with increasing T_{air} in all the studied forest ecosystems, which resulted in a decreased carbon sink (lower absolute values of NEE) in the YJ with increasing R_{eco} and decreasing GPP (Fig. 9a). However, R_{eco} showed higher T sensitivity than the GPP in the XSBN, and these variations resulted in a significantly decreased carbon sink with P values at the 0.001 level (Fig. 9a). In the ALS and LJ, the carbon sink, therefore, may have strengthened because the MAT (11.7 °C and 7.9 °C in ALS and LJ, respectively) was relatively lower, and the T sensitivity of the GPP and R_{eco} was nearly at the same level/velocity (Fig. 9c, d). In summary, future warming may be expected to reduce the carbon sinks in warmer regions (e.g., in the YJ and XSBN, where the MAT was 24.3 °C and 21.4 °C, respectively) but may enhance photosynthesis and increase the carbon sinks in relatively cool regions (e.g., the ALS and LJ) in Yunnan, Southwest, China.

![Fig. 5.](image1)

Fig. 5. Carbon exchange (NEE, R_{eco}, and GPP) variations during the dry season (a), wet season (b) and annual period (c) in the Yuanjiang semi-arid savanna ecosystem (YJ), Xishuangbanna tropical rainforest ecosystem (XSBN), Ailaoshan subtropical evergreen broad-leaved forest ecosystem (ALS) and Lijiang subalpine coniferous forest ecosystem (LJ) in Yunnan Province, Southwest China. The error bar indicates the standard deviation (sd).

![Fig. 6.](image2)

Fig. 6. Coupled relationships between the annual R_{eco} and NEP with the annual GPP in YJ, XSBN, ALS, and LJ in Yunnan Province, Southwest China.
4. Discussion

4.1. Carbon exchanges and their spatio-temporal variability

The carbon exchange in forest ecosystems often shows high spatial variability because of the interactions among environmental factors, topography and soil conditions (Pan et al., 2011; Piao et al., 2009; Yu et al., 2014a; GR Yu et al., 2013a). Strong spatial variability in the NEE was observed in this study (−1.28, −1.25, −7.02, and −4.05 tC ha⁻¹ yr⁻¹ in the YJ, XSBN, ALS, and LJ, respectively) (Fig. 5): the highest carbon sink occurred in the ALS, and the lowest occurred in the tropical forest ecosystem (XSBN), although this area had the highest GPP and Reco (Fig. 5).

The strongest carbon sink (7.02 tC ha⁻¹ yr⁻¹) occurred in the evergreen broadleaved old growth forest (ALS), which was entirely consistent with the biometric measurements within the same forest (−6 tC ha⁻¹ yr⁻¹) from 2003–2007 (Tan et al., 2011) and 6.6 tC ha⁻¹ yr⁻¹ from 2005–2010 (Nizami et al., 2017). Although this area is considered to be ‘old growth forest’, it is still strongly absorbing carbon. It is now understood that old forests often act as carbon sinks, in contrast to the classical view that they reach an equilibrium state (Luyssaert et al., 2008). A strong carbon sink was also found in a subtropical evergreen conifer forest ecosystem in Florida (the multi-year mean NEE was −6.7 tC ha⁻¹ yr⁻¹) (Bracho et al., 2012). Additionally, an interesting intra-annual pattern indicated that each month showed a carbon sink in the ALS and LJ (Fig. 4); similar results were found in three additional evergreen forest ecosystems in South China (Tan et al., 2012; Yan et al., 2013; Yu et al., 2008; LM Zhang et al., 2006) and the Kiryu temperate evergreen coniferous forest in Japan (Takanashi et al., 2005). Our results (Fig. 5 and Table 3) also proved that the temperate forests (e.g., the ALS and LJ) acted as the strongest carbon sinks (Jung et al., 2017; Kondo et al., 2017; Luyssaert et al., 2007; Yu et al., 2014a). Additionally, the carbon sinks in the ALS (broad-leaved) and LJ (coniferous) were higher than those in the corresponding forest ecosystems in China (Table 3). In addition, a review of a large dataset concluded that the mean global NEE in boreal and temperate forest ecosystems was −2.2 ± 0.1 tC ha⁻¹ yr⁻¹ (Luyssaert et al., 2008), which means that the average NEE in the ALS and LJ (−5.54 tC ha⁻¹ yr⁻¹) was exceptional on a global basis and that these ecosystems may be regarded as significant contributors to the global forest carbon sink.

Strong seasonality was observed for the carbon sink in the tropical forest (XSBN), with a modest carbon sink during the dry season (1.30 tC ha⁻¹) but a weak carbon source during the wet season (Fig. 5). Generally, this seasonality matched other results (Baldocchi et al., 2017; Hutyra et al., 2007; Saleska et al., 2003; Tan et al., 2010). Here, the reasons for the seasonality seemed to be the high temperature and soil moisture during the wet season, which resulted in a high Reco (Anderegg et al., 2015; Hutyra et al., 2007; Wang et al., 2014b; Zeng et al., 2007). Further, the results in Table 3 suggested that temperature sensitivity of Reco in the YJ, XSBN, ALS, and LJ were 1.49, 3.19, 4.19, and 2.37, respectively (Fig. 9). This result showed that the Reco values in the XSBN and ALS were more susceptible to any rise in temperature than those in the YJ and LJ.
et al., 2014), so the respiration exceeded the photosynthesis and triggered carbon release (Tan et al., 2010; Zhang et al., 2010). The 14-year mean annual NEE in the tropical forest was $-1.25 \text{ tC ha}^{-1} \text{ yr}^{-1}$, which was lower than the 4-year inventory-based NEP (3.59 tC ha$^{-1}$ yr$^{-1}$) (Tan et al., 2010). The main reason for this result may have been a consecutive 3-year drought that occurred from 2009 to 2011, which decreased the carbon sink. In addition, the carbon sink was lower than that in a 33-year-old rubber plantation that was 10 km from the XSBN, where the eddy covariance and inventory-based NEP was 7.9 and 9.04 tC ha$^{-1}$ yr$^{-1}$, respectively, due to fertilizer input and other management practices (Song et al., 2014). However, our finding was similar to the carbon sink in a tropical forest ecosystem in the Southwest Amazon ($-1.02 \text{ tC ha}^{-1} \text{ yr}^{-1}$) (Grace et al., 1995) and another tropical rainforest ecosystem at Pasoh in Malaysia, where the three-year average NEE was $-1.24 \text{ tC ha}^{-1} \text{ yr}^{-1}$ (Kosugi et al., 2008). A study in Asian terrestrial ecosystems concluded that tropical Asia acts as a carbon sink with a mean annual NEE of $-1.80 \text{ tC ha}^{-1} \text{ yr}^{-1}$ (Kato and Tang, 2008). Furthermore, many larger-scale studies have found that tropical rainforest ecosystems serve as carbon sinks (Gatti et al., 2014; Grace et al., 2014; Pan et al., 2011) and that the average GPP, R$_{ec}$, and NEE from some global tropical forests are 31.14, 30.11, and $-0.84 \text{ tC ha}^{-1} \text{ yr}^{-1}$ (Table 3), although a few tropical rainforest ecosystems have been found to be carbon sources (Hutyra et al., 2007; Kato and Tang, 2008).

In the savanna (YJ), approximately 84% of the annual NEE ($-1.29 \text{ tC ha}^{-1} \text{ yr}^{-1}$) occurred during the wet season, while $-0.21 \text{ tC ha}^{-1} \text{ yr}^{-1}$ occurred during the dry season (Fig. 5), although high MAT and VPD were found in the YJ (Fig. 3 and Table 2). This carbon-sink strength was consistent with the published inventory at the same site (0.96 tC ha$^{-1}$ yr$^{-1}$) (Fei et al., 2017). Many studies found that the carbon sinks in savannas mainly occur during the wet season (Ago et al., 2014; Ardo et al., 2008; Chen et al., 2003; Grace et al., 2006; Ivans et al., 2006; Quansah et al., 2015; Santos et al., 2003; Veenendaal et al., 2004). Therefore, approximately 84% of the NEE could have occurred during the wet season in this savanna ($-1.08 \text{ tC ha}^{-1} \text{ yr}^{-1}$), while the dry season was nearly carbon neutral. A synthesis of carbon-flux data in nearly 20 global savanna ecosystems (Fei et al., 2017) showed that most savanna ecosystems act as carbon sinks and that the amplitude of the NEE ranges from approximately 1.3 to $-3.9 \text{ tC ha}^{-1} \text{ yr}^{-1}$ (the average GPP, R$_{ec}$, and NEE were 10.13 ± 4.66, 8.78 ± 3.79 and $-1.34 ± 1.58 \text{ tC ha}^{-1} \text{ yr}^{-1}$, respectively (Table 3). This study’s data are consistent with these results based on the above statements.

The reported fluxes in this work provide further confirmation that old forests (e.g., the XSBN, ALS, and LJ; see details in Table 1) are acting as carbon sinks (Lewis et al., 2009; Luysaert et al., 2008; Zhou et al., 2006). However, the average NEE was $-3.40 \text{ tC ha}^{-1} \text{ yr}^{-1}$ in Yunnan (Table 3), which was higher than the reported rates from European forest ecosystems ($-1.97 \text{ tC ha}^{-1} \text{ yr}^{-1}$) (Luysaert et al., 2010).
Asian/global forest ecosystems (−2.74, and −2.22 tC ha\(^{-1}\) yr\(^{-1}\), respectively), and Asian/global terrestrial ecosystems (−2.32, and −1.34 tC ha\(^{-1}\) yr\(^{-1}\), respectively) (Table 3). We may conclude that the old-growth forest ecosystems in Yunnan are currently playing an important role in the regional and global carbon cycle and mitigating the global increase in CO\(_2\).

4.2. Correlations among the Reco and NEP with the GPP

The correlations between the Reco and NEP with the GPP provide insights into the mechanism of carbon exchange and may be useful in the construction of biophysical models. Others have demonstrated that the Reco and NEP are positively linearly correlated with the GPP, especially Reco with GPP (Beringer et al., 2016; Chen et al., 2015; Lasslop et al., 2010; GR Yu et al., 2013a). In this work, combining data from all four sites showed that Reco was highly coupled with the GPP in a roughly linear fashion (Fig. 6), which matched other findings elsewhere (Baldocchi et al., 2017; Law et al., 2002; GR Yu et al., 2013a) and the structure of the dataset remarkably affected the regression results; and 2) the latitude trend in the NEP demonstrates that the mid-latitude has a stronger carbon sink (Kato and Tang, 2008; Kondo et al., 2017; Yu et al., 2014a) and that tropical forest ecosystems (lower latitude) have a larger GPP than mid-latitude ecosystems. Thus, the ratio between the NEP and GPP in tropical forests should be lower than that in subtropical or other ecosystems. Thus, a key finding in this research was that the NEP decreased when the GPP was greater than some threshold and that their relationship is best expressed as a quadratic model.

4.3. Effects of temperature and precipitation on carbon exchange

In this study, path analysis and RDA were applied to suggest the quantitative effects of control factors (T, P, and VPD) on carbon sinks. This analysis must be regarded as tentative because of the strong inter-correlations between the environmental variables. Notwithstanding this difficulty, the NEP was controlled mainly by the VPD and P in the YJ (the PCs were −0.69 and 0.46, respectively) but by T in the XSBN, ALS and LJ. Interestingly, we found that T had a strongly negative (PC = −0.54) influence on the NEP in the XSBN but a positive influence in the ALS and LJ (Fig. 7). RDA was then applied to quantify the effects of

Fig. 10. Regression analysis between the carbon exchange (GPP, Reco, NEE) and soil volumetric water content (SVWC, %) at a daily time scale in the Yuanjiang semi-arid savanna ecosystem (a), Xishuangbanna tropical rainforest ecosystem (b), Ailaoshan subtropical evergreen broad-leaved forest ecosystem (c) and Lijiang subalpine coniferous forest ecosystem (d) in Yunnan Province, Southwest China. The dataset were multyear daily averaged values.
Fig. 11. Interaction of the air temperature (Tair, °C) and soil volumetric water content (SVWC, %) on the GPP (a1–d1), Reco (a2–d2), and NEE (a3–d3) at a daily time scale in the Yuanjiang semi-arid savanna ecosystem (a), Xishuangbanna tropical rainforest ecosystem (b), Ailaoshan subtropical evergreen broad-leaved forest ecosystem (c) and Lijiang subalpine coniferous forest ecosystem (d) in Yunnan Province, Southwest China. The data were multiyear daily averaged values.
T and P on the carbon sink: T and P jointly explained 39.7%, 32.2%, 25.3%, and 29.6% of the variations in the NEE in the YJ, XSBN, ALS and LJ, respectively (Fig. 8). Based on the path analysis and RDA, we may draw the conclusion that the precipitation determines the NEP in semi-arid savanna ecosystems (e.g., the YJ) (Beringer et al., 2011; Beringer et al., 2016), whereas the temperature determines the NEP in tropical forest ecosystems (e.g., the XSBN) and the NEP is determined by both T and P in temperate ecosystems (e.g., ALS and LJ) (Figs. 7 and 8). Overall, the temperature had a greater influence on the NEP than the precipitation (Figs. 7, 8, S4, and S5). Additionally, T and P generally play key roles in carbon exchange (Anderson-Teixeira et al., 2011; Baldocchi et al., 2017; Chen et al., 2013; Jung et al., 2017; Wu et al., 2011; Yu et al., 2010; GR Yu et al., 2013a), we thereafter used T and P as the main control factors in the regression analysis of the responses of carbon fluxes to determinants. The results are as follows.

The carbon sinks might significantly weaken in the YJ and XSBN under increasing temperature (Figs. 9 and S2). Interestingly, the carbon-uptake mechanism under warming was not the same as that under increasing temperature: the GPP decreased but R_n increased in the YJ, thus decreasing the carbon sink. In contrast, both GPP and R_n increased in the XSBN, but R_n outpaced the GPP and thus decreased the carbon sink (Figs. 9 and S2). Studies also showed that warming decreased the NEP in savanna ecosystems (Cleverly et al., 2013; Fei et al., 2017; Kanniah et al., 2011) and increased R_n significantly more than the GPP in tropical forest ecosystems, which weakened the NEP (Baldocchi et al., 2017; Wang et al., 2013; Wang et al., 2014; Zhang et al., 2010). In addition, the CV of the NEE was high (Fig. S1), and T had a negative effect on the carbon sinks in the XSBN and YJ (Fig. 7). Thus, carbon sequestration might decrease in both the YJ and XSBN under future warming.

In contrast, the carbon sink may increase in the ALS and LJ (Figs. 9, 11, and S2) because of the lower MAT and relative abundance of MAP in the ALS and LJ (Fig. 3b, e and Table 2). A study that was based on a 93-site-year database showed that warming may increase the carbon sinks in European forest ecosystems (Reichstein et al., 2007), while a meta-analysis suggested that warming may slightly increase the carbon uptake (Wu et al., 2011), and a 403-site-year database study concluded that climate warming might enhance the carbon sinks in boreal and temperate ecosystems (Grant et al., 2009; Zhang et al., 2017). Additionally, forest ecosystems in mid-latitude regions (with a generally higher MAT than high-latitude regions) had stronger carbon sequestration than high-latitude regions (Kato and Tang, 2008; Kondo et al., 2017; Yu et al., 2014a), which also demonstrated that slight warming in lower-MAT regions favors a stronger carbon sink. In addition, nitrogen deposition and increasing CO2 concentration is expected to enhance photosynthesis and increase the carbon sink (Baldocchi et al., 2017; Campbell et al., 2017; Reay et al., 2008; Wang et al., 2017; Wenzel et al., 2016; Yu et al., 2014a).

Meanwhile, changes in precipitation and soil moisture caused significant variations in the NEE in the YJ and XSBN but had only a slight influence on the NEE in the ALS and LJ (Figs. 10 and S3). Precipitation is expected to increase in most regions in China, especially in the northwest and northeast (IPCC, 2013), but this factor may decrease in most of the southwest (e.g., Yunnan Province) (Gao et al., 2012; Wu et al., 2016). Thus, variations in P might have negligible effects on the carbon sinks in the ALS and LJ (Figs. 10 and S3) because of the moisture availability and lower temperatures (Table 2). By contrast, the carbon sink in the YJ might diminish (Figs. 10 and S3) because of the moisture availability and lower temperatures (Table 2).

According to the above discussion, the carbon sink might decrease in the YJ (savanna ecosystem) under warming and decreased precipitation, but the effect at the XSBN (tropical forest ecosystem) is somewhat uncertain. In contrast, the carbon sinks may increase in the ALS and LJ (temperate forest ecosystems). However, these contrasting changes in the carbon sinks may depend on the magnitudes of the variations in T and P alongside the seasonality and other factors.

Acknowledgments

We would like to thank the editorial members of the journal and the two reviewers (Hank Loescher and another anonymous reviewer) for their constructive comments and suggestions and the staff and technicians of the Yuanjiang Research Station for Savanna Ecosystems, the Xishuangbanna Station for Tropical Rainforest Ecosystem Studies, the Ailaoshan Station for Subtropical Forest Ecosystem Studies, the Public Technology Service Center of Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, and the Lijiang Forest Ecosystem Research Station of Kunming Institute of Botany, Chinese Academy of Sciences for their invaluable contributions to the instruments’
maintenance, fieldwork and data collection. And this study was supported by the Joint Foundation from the National Natural Science Foundation of China and the Natural Science of the Yunnan Province (U1602234 and U1202234), the National Natural Science Foundation of China (21477120, 21406143, and 31202021), the National Key Research and Development Program of China (2016YFC0502015), CAS-JSPS Cooperative Research Project (GJHZ1521), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA05050601 and XDA05050206), Chinese Academy of Sciences President’s International Fellowship Initiative (2017VCA0036).

Competing financial interests

The authors declare no competing financial interests.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.scitotenv.2017.10.239.

References

