Phylogenetic Analyses of Amomum (Alpinioideae: Zingiberaceae) Using ITS and matK DNA
Sequence Data
Author(s): Yong-Mei Xia, W. John Kress and Linda M. Prince
Reviewed work(s):
Published by: American Society of Plant Taxonomists
Stable URL: http://www.jstor.org/stable/25063965
Accessed: 13/07/2012 04:40

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.
Phylogenetic Analyses of Amomum (Alpinioideae: Zingiberaceae) Using ITS and matK DNA Sequence Data

YONG-MEI XIA, 1 W. JOHN KRESS, 2, 4 and LINDA M. PRINCE 2, 3

1Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China;
2Botany, MRC-166, United States National Herbarium, National Museum of Natural History, Smithsonian Institution, PO Box 37012 Washington, District of Columbia 20013-7012;
3Current address: Rancho Santa Anna Botanic Garden, 1500 North College Avenue, Claremont, California 91711-3157;
4Author for Correspondence (kress.john@nrmnh.si.edu)

Communicating Editor: Wendy B. Zomlefer

ABSTRACT. Comparative sequencing of the nuclear ribosomal Internal Transcribed Spacer (ITS) and the chloroplast matK coding and non-coding regions was used to examine the evolutionary relationships among 53 accessions representing 13 genera of the Zingiberaceae, including 31 accessions of Amomum (Alpinioideae). Phylogenetic analyses of the ITS and matK sequences alone and in combination using maximum parsimony methods produced a moderately supported topology within Alpinioideae. Our results indicated that Amomum as currently defined is polyphylectic with three major groups of species that do not correspond with any previously recognized sectional classification of the genus. Our analyses also identified Paromomum as sister to Elettariopsis, which are both embedded within one group of Amomum. The other two groups of Amomum share common ancestors with additional genera of the Alpinioideae. ITS and matK sequences provide new data for inferring relationships within Amomum and allow fresh interpretations of morphological characters (such as anther appendage and fruit type) that may be of value in future classifications.

Amomum Roxb. is the second largest genus after Alpinia Roxb. in the ginger family (Zingiberaceae) with about 150–180 species widely distributed in Southeast Asia (Tong 1999). As currently recognized, Amomum occurs from the Himalayas through southeast Asia to northern Australia and extends into the central Pacific (Kiew 1982; Smith 1985). Plants of Amomum are generally evergreen herbs inhabiting wet forests in light gaps and at forest margins. However, the genus also includes several epiphytes as well as relatively small herbs growing on the forest floor with few-budded shoots (Sakai and Nagamasu 1998). Amomum includes a central, homogeneous group of species defined by the basal, compact, usually cone-like inflorescence (that lacks an involucre of sterile bracts and tends to elongate after flowering), flowers borne singly in the axils of prominent bracts, tubular bracteoles, a broad concave labellum only slightly longer than the corolla-labes, and a well-developed anther appendage that may be distinctly bilobed, trilobed, or entire. Many species of Amomum are used in traditional Chinese medicine and Amomum tsao-ko is a favorite food condiment in China.

The genus Amomum was first recognized by Linnaeus (1753) in Monandria Monogynia and included four species: A. zingiber, A. zerumbet, A. cardamomum, and A. grana-paradisi. These species have since been transferred to Aframomum K. Schum., Zingiber Boehm, and Elettaria Maton (Burtt and Smith 1972a). Roxburgh (1819) defined the genus Amomum based on the structure of the inflorescence and flower, while Schumann's (1904) account, the most recent treatment of the genus in its entirety, failed to resolve major problems of nomenclature. He accepted Roxburgh's generic concept, removed the Linnaean species from the genus, and retained the name Amomum. He also subdivided the genus into two sections and four series: sect. Geantius, distinguished by the absence of an anther appendage and composed of ser. Oliganthae and Polyanthae, and sect. Euamomum with an anther appendage and comprised of ser. Lobulatae and Integræ (Table 1). The four members of ser. Oliganthae have been subsequently transferred to the genus Elingera Giseke, and most members of ser. Polyanthae, while including several true Amomum, may more appropriately be transferred to that genus as well. The majority of the much larger sect. Euamomum has been retained in Amomum (Smith 1985). Members of ser. Lobulatae are distinguished by a bilobed or trilobed anther appendage and ser. Integræ by an entire anther appendage. Tsai et al. (1981) elevated ser. Lobulatae to the rank of subgenus for species with trilobed anther appendages and placed all the remaining species with bilobed anther appendages into subgen. Amomum (Table 2). However, not all authors agree on the taxonomic placement of species; for example, A. tsao-ko was placed in subg. Lobulatae by Tsai et al. (1981) and treated in subg. Amomum by Tong (1999). To date workers have paid little attention to fruit characters in classification even though Holttum (1950) recognized two types of fruits in Amomum: smooth, thin-walled, usually ridged dry capsules vs. fleshy, spiny berries.

With regards to the placement of Amomum in the Zingiberaceae, early researchers recognized three tribes in the family: Globbeae, Hedychieae, and Zingiberaceae—the last including Alpinia and Amomum.
Table 1. Schumann’s (1904) classification of *Amomum*.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section I. Geranthis Blume</td>
<td>Anther appendage absent</td>
</tr>
<tr>
<td>Series 1. Oliganthae K. Schum.</td>
<td>Flowers few, 3–4 per bract</td>
</tr>
<tr>
<td>Series 2. Polyanthae K. Schum.</td>
<td>Flowers many, greater than 4 per bract</td>
</tr>
<tr>
<td>Section II. Euamomum K. Schum.</td>
<td>Anther appendage present</td>
</tr>
<tr>
<td>Series 3. Lobulatae K. Schum.</td>
<td>Anther appendage with two or three lobes</td>
</tr>
<tr>
<td>Series 4. Ingereae K. Schum.</td>
<td>Anther appendage entire</td>
</tr>
</tbody>
</table>

(Schumann 1904; Loesener 1930). Holttum (1950) on the basis of inflorescence structure suggested the transfer of *Zingiber* from the *Alpinia* group, which he re-named tribe *Alpinieae*, and treated *Zingiber* as a segregate tribe *Zingiberaceae*. More recently researchers have confirmed the placement of *Amomum* in the large tribe Alpinieae of subfam. Alpinioideae based on morphological and molecular data (Burtt and Smith 1972b; Larsen et al. 1998; Kress et al. 2002).

Morphological variation in *Amomum*, particularly in flower structure, has complicated circumscription of the genus. In particular *Amomum* and *Elettariopsis*, both southeast Asian genera, are strikingly similar in floral structure and are difficult to distinguish (Holttum 1950). A revision of *Amomum* is essential to delineate the limits of the genus *Elettariopsis* and their relationship (Kiew 1982). The monotypic genus *Paramomum* has similar features to *Amomum*, but has been maintained as a segregate genus on the basis of morphological characters (Wu 1997). A comprehensive treatment including all species of *Amomum* has not been recently attempted due in part to the large number of species, the lack of significant collections, and the complexity of morphological characters. Investigators have individually studied *Amomum* in different localities: Tsai et al. (1981) in China, Sakai and Nagamasu (1998) in the Lambir Hills of Sarawak, and Smith (1985, 1989) in Borneo. In the latter study Smith divided the species of *Amomum* from Borneo into groups according to several characters, such as the number of flowers per bract, the shape of the bracteoles, the length of the corolla tube, the relation of the lateral petals to the labellum, lateral staminode shape, anther dehiscence, and anther appendage shape.

Our initial investigation of the phylogeny of *Amomum* used molecular data to determine broad relationships among the species. The nuclear ribosomal Internal Transcribed Spacer (ITS) region has been shown to be phylogenetically informative for infra- and intergeneric relationships in a range of plant groups (Baldwin et al. 1995). Many studies have documented the utility of the chloroplast gene *matK* (including coding and non-coding regions) in resolving phylogenetic relationships at a variety of taxonomic levels, from specific to familial (Johnson and Soltis 1994, 1995). Recent phylogenetic studies have explored relationships within the Zingiberaceae using the chloroplast *trnL* intron and *trnL*--F intergenic spacer, *matK*, and the nuclear ribosomal ITS region (Harris et al. 2000; Rangsinriju et al. 2000; Searle and Hederson 2000; Wood et al. 2000; Kress et al. 2002). These studies have demonstrated the utility of ITS and *matK* in phylogenetic analyses in the Zingiberaceae. Separate analyses of different genes have the advantage of highlighting points of conflict in data sets. However, unless conflict patterns are strongly supported, a combined analysis may provide the best estimate of phylogeny (de Queiroz et al. 1995; Nixon and Carpenter 1996).

We used both the ITS and *matK* loci in separate and combined analyses of *Amomum* in order to examine intrageneric relationships as well as the monophyly of previously proposed subgenera in *Amomum*. Using our phylogenetic results, we then assessed morphological characters traditionally used for delimitation of subgenera in *Amomum* (e.g., anther appendages). The main goals of the present study were: (1) to assess the utility in phylogenetic reconstruction of the ITS and *matK* loci in *Amomum* and related taxa, (2) to construct phylogenetic hypotheses of the interspecific relationships within *Amomum* and compare the results with previously proposed classifications, (3) to examine the relationship between *Amomum* and its closely related genera such as *Elettariopsis* Baker and *Paramomum* S. Q. Tong, and (4) to assess the congruence of several morphological characters with the molecular results.

Materials and Methods

Taxon sampling. A total of 53 accessions representing 51 taxa of Zingiberaceae were sampled to obtain comparative sequences of nuclear ITS and the chloroplast *matK* coding and non-coding regions. These taxa included *Siphonochilus* J. M. Woods & Franks, *Tamjia* S. Sakai & Nagam., and *Camptandra* Ridl. as outgroup taxa based on the work of Kress et al. (2002), representatives of seven additional genera of Alpinieae, and 31 accessions of *Amomum* (Table 2). The samples of *Amomum* represented both subgenera (Tsai et al. 1981) and two of the five species groups of Smith (1985, 1989).

DNA Extraction. Total genomic DNAs were extracted from ~1cm² fresh or silica-gel-dried plant material using a modified (addition of 40 ng proteinase K; 20 minute incubation at 50°C) 2X CTAB buffer method (Doyle and Doyle 1987). Leaf material was ground in liquid nitrogen. The aqueous phase was extracted with chloroform-isooamyl alcohol (24:1, v/v). DNAs were resuspended in TE buffer (10 mM tris-HCl, 1 mM EDTA, pH 8.0) followed by isopropyl alcohol precipitation at ~20°C for approximately 1 h.

DNA Amplification and Sequencing. The entire ITS1–5.8S–ITS2 region was amplified via polymerase chain reaction (PCR) using ITS5 and ITS4 (White et al. 1990) with GibcoBRL native Taq polymerase (Grand Island, New York, USA) according to the manufacturer’s directions. The double-stranded PCR products were am-
Table 2. Vouchers for sequence data for the analyses of ITS and matK of *Amomum* and related taxa. The classification system of *Amomum* follows Schumann (1904), Tsai et al. (1981), Smith (1985, 1989), and Tong (1999). US = United States National Herbarium; HITBC = Herbarium of the Institute of Tropical Botany of China (in Xishuangbanna); KYO = Kyoto University Herbarium; Lyon Arbor = Harold L. Lyon Arboretum in Hawaii.

<table>
<thead>
<tr>
<th>Taxon Name</th>
<th>Subgenera of Amomum</th>
<th>Groups of Amomum</th>
<th>GenBank accession number ITS</th>
<th>GenBank accession number matK</th>
<th>Geographic origin of sample</th>
<th>Collector, herbarium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outgroup</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camptandra parvula (King ex Bak.) Ridl.</td>
<td>-</td>
<td>-</td>
<td>AY351985</td>
<td>AY352015</td>
<td>China</td>
<td>Xia-719 (HITBC)</td>
</tr>
<tr>
<td>Siphonochilus kirki (Hook.) B.L. Burtt</td>
<td>-</td>
<td>-</td>
<td>AY351987</td>
<td>AY352017</td>
<td>China</td>
<td>Xia-721 (HITBC)</td>
</tr>
<tr>
<td>Tantijia flagellaris S. Sakai & Nagam.</td>
<td>-</td>
<td>-</td>
<td>AY351990</td>
<td>AY352020</td>
<td>China</td>
<td>Xia-731 (HITBC)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingroup</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Amomum angustifolium K. Schum.</td>
<td>-</td>
<td>-</td>
<td>AY351986</td>
<td>AY352016</td>
<td>Indonesia</td>
<td>Xia-720 (HITBC)</td>
</tr>
<tr>
<td>A. daniellii K. Schum.</td>
<td>-</td>
<td>-</td>
<td>AY351987</td>
<td>AY352017</td>
<td>China</td>
<td>Xia-721 (HITBC)</td>
</tr>
<tr>
<td>A. coronarioides S. Q. Tong et Y. M. Xia</td>
<td>-</td>
<td>-</td>
<td>AY351990</td>
<td>AY352020</td>
<td>China</td>
<td>Xia-731 (HITBC)</td>
</tr>
<tr>
<td>A. eriopodophyllum S. Q. Tong et Y. M. Xia</td>
<td>-</td>
<td>-</td>
<td>AY351991</td>
<td>AY352021</td>
<td>China</td>
<td>Xia-723 (HITBC)</td>
</tr>
<tr>
<td>A. flagellaris X. M. Tong</td>
<td>-</td>
<td>-</td>
<td>AY351992</td>
<td>AY352022</td>
<td>China</td>
<td>Xia-724 (HITBC)</td>
</tr>
<tr>
<td>A. flagellaris 1 Pierre ex Gagnep.</td>
<td>-</td>
<td>-</td>
<td>AY351993</td>
<td>AY352023</td>
<td>China</td>
<td>Xia-732 (HITBC)</td>
</tr>
<tr>
<td>A. flagellaris 2 Pierre ex Gagnep.</td>
<td>-</td>
<td>-</td>
<td>AY351994</td>
<td>AY352024</td>
<td>Borneo</td>
<td>Lyon Arbor. 2000.0388</td>
</tr>
<tr>
<td>A. flagellaris K. Schum.</td>
<td>-</td>
<td>-</td>
<td>AY351995</td>
<td>AY352025</td>
<td>China</td>
<td>Xia-725 (HITBC)</td>
</tr>
<tr>
<td>A. flagellaris X. M. Tong</td>
<td>-</td>
<td>-</td>
<td>AY351996</td>
<td>AY352026</td>
<td>China</td>
<td>Xia-726 (HITBC)</td>
</tr>
<tr>
<td>A. flagellaris 1 Pierre ex Gagnep.</td>
<td>-</td>
<td>-</td>
<td>AY351997</td>
<td>AY352027</td>
<td>China</td>
<td>Xia-727 (HITBC)</td>
</tr>
<tr>
<td>A. flagellaris 2 Pierre ex Gagnep.</td>
<td>-</td>
<td>-</td>
<td>AY351998</td>
<td>AY352028</td>
<td>China</td>
<td>Xia-728 (HITBC)</td>
</tr>
<tr>
<td>A. flagellaris K. Schum.</td>
<td>-</td>
<td>-</td>
<td>AY351999</td>
<td>AY352029</td>
<td>Philippines</td>
<td>Lyon Arbor. 93.0558</td>
</tr>
<tr>
<td>A. longigentilatum Merr.</td>
<td>-</td>
<td>-</td>
<td>AY352000</td>
<td>AY352030</td>
<td>China</td>
<td>Xia-727 (HITBC)</td>
</tr>
<tr>
<td>A. maximum Roxb.</td>
<td>-</td>
<td>-</td>
<td>AY352001</td>
<td>AY352031</td>
<td>Myanmar</td>
<td>Kress #01-6862 (US)</td>
</tr>
<tr>
<td>A. mengiense S. Q. Tong</td>
<td>-</td>
<td>-</td>
<td>AY352002</td>
<td>AY352032</td>
<td>China</td>
<td>Xia-728 (HITBC)</td>
</tr>
<tr>
<td>A. paratsako S. Q. Tong & Y. M. Xia</td>
<td>-</td>
<td>-</td>
<td>AY352003</td>
<td>AY352033</td>
<td>Australia</td>
<td>Lyon Arbor. Kmt 1428</td>
</tr>
<tr>
<td>A. paratsako S. Q. Tong & Y. M. Xia</td>
<td>-</td>
<td>-</td>
<td>AY352004</td>
<td>AY352034</td>
<td>China</td>
<td>Xia-730 (HITBC)</td>
</tr>
<tr>
<td>A. putrescens D. Fang</td>
<td>-</td>
<td>-</td>
<td>AY352005</td>
<td>AY352035</td>
<td>China</td>
<td>Xia-733 (HITBC)</td>
</tr>
<tr>
<td>A. quadratolaminum S. Q. Tong</td>
<td>-</td>
<td>-</td>
<td>AY352006</td>
<td>AY352036</td>
<td>China</td>
<td>Xia-734 (HITBC)</td>
</tr>
<tr>
<td>A. queenslandicum R. M. Sm.</td>
<td>-</td>
<td>-</td>
<td>AY352007</td>
<td>AY352037</td>
<td>China</td>
<td>Xia-735 (HITBC)</td>
</tr>
<tr>
<td>A. sixanum M. Xia</td>
<td>-</td>
<td>-</td>
<td>AY352008</td>
<td>AY352038</td>
<td>Thailand</td>
<td>Kress #00-6706 (US)</td>
</tr>
<tr>
<td>A. villosum 1 Lour.</td>
<td>-</td>
<td>-</td>
<td>AY352009</td>
<td>AY352039</td>
<td>Thailand</td>
<td>Lyon Arbor. 99.0474</td>
</tr>
<tr>
<td>A. villosum 2 Lour.</td>
<td>-</td>
<td>-</td>
<td>AY352010</td>
<td>AY352040</td>
<td>China</td>
<td>Kress #01-6978 (US)</td>
</tr>
</tbody>
</table>
plified at an annealing temperature of 94°C. Amplification using these primers produced an approximately 700 bp fragment.

The procedure described above was also followed for the matK locus, including the coding region (1388 bp at the 3’ end of the gene) and the intergenic spacer region between the matK coding and 3’ trnK regions. Double-stranded DNAs were amplified with mIF (GTTCAGTACTTGTGGACACTT, corresponding to nucleotides 167–187 of Zingerber gramineum matK; Kress et al. 2002) and trnK2R (Steele and Vilgalys 1994) as PCR primers for most matK sequences with an annealing temperature of 94°C, producing a 1700–1800 bp fragment.

The double-stranded PCR products were subsequently purified via PEG precipitation (Johnson and Solits 1995). Clean PCR products were quantified by electrophoresis in a 1% agarose mini-gel with λ DNA standards.

Automated cycle sequencing was carried out using the Big Dye Terminator Cycle Sequencing Ready Reaction Kit (Perkin-Elmer Applied Biosystems, Foster City, California, USA) following the manufacturer’s protocol at the Smithsonian Institution’s Laboratory for Analytical Biology in Suitland, Maryland, USA. Cycle sequencing used both the PCR primers and several internal primers including ITS2 (White et al. 1990) and ITS3G (Kress et al. 2002) for the ITS region, and m5S, m6S, m5R, and m6R (Kress et al. 2002) for the matK region. Products were cleaned in Sephadex G-50 (fine) Centri-Sep spin columns (Princeton Separations, P/N 901, Adelphia, New Jersey, USA). Samples were dried under vacuum, and sequencing reactions were electrophoresed for 12 h on an ABI PRISM™ 377 DNA sequencer (Perkin Elmer Applied Biosystems, Inc., Foster City, California, USA) in a 5% Long Ranger gel.

Electropherograms were assembled and edited with Sequencher 3.1.1 software (Gene Codes Corporation, Ann Arbor, Michigan, USA). Sequences were aligned manually with minimal gaps and base substitutions in Se-Al version 2.0a11 (Rambaut 2002). There were a few small regions of ambiguity, usually involving major insertions, deletions, and microsatellites. Areas in which the sequences could not be aligned confidently were excluded from the analyses.

Phylogenetic Analyses. Three taxa representing the three other subfamilies of the Zingiberales were selected as outgroups (Siphonoctlis: Siphonoctiloidae; Tania; Taniiodae; and Camptandra: Zingberoidae; Kress et al. 2002) with Siphonoctlis selected as the ultimate outgroup. All cladistic analyses were performed using the parsimony algorithm of the software package PAUP* version 4.0b10 (Swofford 2002) on a Power Macintosh G4. Maximum parsimony searches were conducted using heuristic search methods (500 Random Addition Replicates) with Tree Bisection Reconnection (TBR) branch swapping to find the most parsimonious trees, weighting all characters equally (Fitch parsimony), and saving all shortest trees. Parsimony informative indels were coded as present or absent and added at the end of the data matrix. Uninformative characters were excluded from all analyses. The sequence data for ITS and matK were analyzed separately and then combined and analyzed as a single data set. The consistency index (CI; Kluge and Farris 1969) and retention Index (RI; Farris 1989) were calculated using PAUP. To assess confidence in resulting tree topologies, bootstrap analyses (Felsenstein 1985) with 100,000 fastswap replications were performed for each data set using PAUP (Mort et al. 2000). The data set is available on TreeBASE.

RESULTS

The ITS Analysis. The two ITS sequencing primers produced overlapping fragments that collectively covered the entire spacer and 5.8S rDNA regions along both strands. ITS-1 had a total aligned length of 186 bp; the 5.8S region had an aligned length of 164 bp; and the ITS-2 aligned length was 256 bp. Multiple alignments were explored (data not shown) without major changes to tree topology. Alignments resulted...
in 20 unambiguous indels ranging from 1 to 10 bp in length; 11 of these indels were single-bases. A maximum parsimony analysis of the ITS data set resulted in 108 most-parsimonious trees of length 593 steps (number of parsimony-informative characters = 185, CI = 0.499, RI = 0.779) for 53 accessions.

A number of nodes collapsed in the strict consensus of the 108 shortest trees (Fig. 1), however, three clades containing species of *Amomum* were defined with moderate to strong bootstrap support (65–100). The species of *Amomum* within each of these clades did not constitute monophyletic lineages in every case: clade A (*Vannoverberghia* Merr., *Etlingera*, *Hornstedtia* Retz., plus the paraphyletic *Amomum villosum* group; bootstrap of 73), clade B (the monophyletic *Amomum tsako* group; bootstrap of 100), and clade C (*Paramomum*, *Elettariopsis*, and the paraphyletic *Amomum maximum* group; bootstrap of 65). Two groups of species are found in the *Amomum* maximum group: 1) *A. subcapitatum* and *A. putrescens* are paraphyletic with *Elettariopsis* and *Paramomum*, and 2) *Amomum austrosinens*, *A. glabrum* (two accessions), *A. longipetiolatum*, *A. maximum*, *A. menglaense*, *A. purpurorubrum*, *A. queenslandicum*, *A. sericeum*, *A. aff. purpurorubrum*, and *A. aff. glabrum* are monophyletic but with only weak bootstrap support (56).

The matK Analysis. The matK coding and non-coding regions had an aligned length of 1796 bp in the taxa surveyed. Multiple alignments were explored (data not shown) without major changes to tree topology. Alignment resulted in 19 unambiguous indels ranging from 3 to 28 bp in length (five in the coding region and only present in the outgroup taxa; 14 in the non-coding region). Maximum parsimony analysis of *Amomum* in the matK data set resulted in 359 most-parsimonious trees of length 175 steps (number of parsimony-informative characters = 94, CI = 0.674, RI = 0.885; Fig. 2) for 53 accessions.

The matK analysis, like the ITS analysis, resolved three clades containing species of *Amomum* (Fig. 2), and the species composition of the three clades was identical although with less interspecific resolution. Clades A and B are strongly supported (with bootstraps of 93 and 100, respectively); support for clade C is weak (with a bootstrap of 50), and the relationships among several species are unresolved.

The Combined Data Analysis. The close congruence of topologies of the trees resulting from the separate analyses of the ITS and matK genes, especially in the nearly identical A, B, and C clades containing *Amomum*, support combining the two data sets into a simultaneous analysis of the total sequence data (Nixon and Carpenter 1996; Soltis et al. 1998). The combined ITS and matK data had an aligned length of 2402 bp in the taxa surveyed. Simultaneous analysis of the ITS and matK data resulted in 96 most parsimonious trees of length 778 steps (number of parsimony informative characters = 279, CI = 0.532, RI = 0.802; Fig. 3).

As in other analyses in which the total evidence approach is used and molecular data sets are combined (e.g., Soltis et al. 1998; Mishler 2000) bootstrap support and resolution were increased for various clades in our analyses (Fig. 3). The combined data analysis provided the strongest support for hypotheses of relationships within *Amomum* with significant bootstrap values ranging from 93 to 100 for clades A, B, and C and more internal resolution. The following discussion addresses the results of the combined analysis. Provisional names, intended for use only in the following discussion, have been given to the major clades identified in this study. More intensive species sampling is necessary before formal nomenclatural changes will be proposed.

Discussion

Despite considerable recent interest in the taxonomy and classification of the Zingiberaceae, little is known about the phylogeny of *Amomum*. In their investigation of the relationships among genera in the family Zingiberaceae, Kress et al. (2002) and Harris et al. (2000) demonstrated, with limited species sampling, that *Amomum* is not monophyletic. Our study confirms this result and resolves three separate groups of species of *Amomum* that do not correspond to any of the earlier classifications based on anther appendage type alone (Schumann 1904; Tsai et al. 1981) or a suite of morphological characters in tandem (Smith 1985, 1989). For most of the *Amomum* species sampled, fruit morphology, a character not previously used in classification of the genus, was congruent with the various clades identified by the phylogenetic analyses (see below). The results of our combined gene analyses showed greater statistical support for the three primary clades in the Alpinioideae than either of the separate analyses alone, supporting the contention that combined data analyses can remedy the inability of only one data set to provide strong support for portions of a phylogeny (Nixon and Carpenter 1996; Soltis et al. 1998). Our results also address the unique taxonomic position of the disputed genus *Paramomum* and the relationships between *Amomum* and *Elettariopsis*. We conclude that *Paramomum* and *Elettariopsis* both evolved from a core clade of *Amomum* through inflorescence and flower diversification. Below, we discuss each of these results and their interpretations in more detail as well as their implications for a new classification of *Amomum*.

Comparison to Previous Treatments of Amomum.

According to our analyses *Amomum* as currently recognized is polyphyletic, and all previous classifications will require significant revision. Based on Schumann’s 1904 account, Tsai et al. (1981) divided *Amomum* into subg. *Amomum* and subg. *Lobulatae* based on the shape
Fig. 1. One of 108 equally parsimonious trees of the analysis of the ITS sequence data (length = 593; consistency index = 0.499, excluding uninformative characters; and retention index = 0.779) showing branch lengths (above the line) and bootstrap values (below the line if ≥ 50%). Asterisks indicate nodes that collapse in the strict consensus tree. Solid arrows indicate the three main groups (A-C) containing the species of *Amomum.*
Fig. 2. One of 359 equally parsimonious trees of the analysis of the matK region (coding and noncoding) sequence data (length = 175; consistency index = 0.674, excluding uninformative characters; and retention index = 0.885) showing branch lengths (above the line) and bootstrap values (below the line if ≥ 50%). Asterisks indicate nodes that collapse in the strict consensus tree. Solid arrows indicate the three main groups (A-C) containing the species of Amomum.
Fig. 3. One of 96 equally parsimonious trees of the analysis of the combined ITS and matK region (coding and noncoding) sequence data (length = 778; consistency index = 0.532, excluding uninformative characters; and retention index = 0.802) showing branch lengths (above the line) and bootstrap values (below the line if ≥ 50%). Asterisks indicate nodes that collapse in the strict consensus tree. Solid arrows indicate the three main clades (A-C) containing the species of Amomum. Symbols indicate the two anther appendage types (subg. Amomum with bilobed appendage; subg. Lobulatae with trilobed appendage) and four fruit types (Tsao-ko type with smooth fruit; Villosum type with echinate fruit; Maximum type with 7–9-winged fruit; Sericeum type with shallow ridges fruit).
of the anther appendage: bilobed or trilobed, respectively. These two subgenera are not monophyletic in our study, and the groups of species defined in our analyses (Fig. 3) do not correspond to anther appendage type. Anther appendage shape is apparently homoplasious.

Our results also do not support at least two of the five groups of *Amomum* as proposed by Smith (1985, 1989). Two species of Smith’s Group I and 25 species of Group IV (Table 2) were included in our sample. The resultant cladograms indicate two of the species of her Group I form a paraphyletic grade basal to the genera *Elettariopsis* and *Paramomum*. The species of Smith’s Group IV are not monophyletic and are distributed among the three clades containing species of *Amomum*.

The Major Clades and Grades of Amomum. The three clades of taxa in the Alpinioideae (A, B, and C in Figs. 1–3) that include species of *Amomum* are each strongly supported with high bootstrap values ranging from 93 to 100. However, only the species of *Amomum* in clade B form a monophyletic group. The groups of *Amomum* species in clades A and C are paraphyletic with the genera *Etlingera*, *Vanxerberghia*, and *Hornestdttia*, and with the genera *Paramomum* and *Elettariopsis*, respectively.

The A. Tsao-Ko Group. The five taxa in the A. Tsao-Ko group form a clade with high bootstrap support (100) in all three analyses. Species in this group have either a bilobed or trilobed anther appendage. Morphologically, members of this clade are easily recognized by the smooth fruit here called the “Tsao-Ko type.” The leaves when crushed have a rather pleasant odor, and the tip of the labellum is entire with very thin tissue.

The A. Villosum Group. The 10 members of the A. Villosum group are defined by a number of features: a labellum with thickened tissue at the apex, a distinctly angled anther appendage that is either bilobed or trilobed, an infructescence that is elongated at maturity, and an echinate fruit, here called the “Villosum type.” Although *Amomum koenigii* is strongly supported as a member of this clade, the capsule shape of *A. koenigii* is smooth, resembling the “Tsao-Ko type,” but differs from that type by the many spots on the surface. The position of the *Vanxerberghia* + *Etlingera* + *Hornestdttia* clade as sister to nine of the 10 species in this group is highly supported in the combined data analysis (bootstrap = 92). This placement is supported by the earlier results of Kress et al. (2002), although they showed that some species of the genus *Alpinia* are also included in this clade. The unique turbinate bracteoles of *Amomum laxisquamousum* (Schumann 1904) is concordant with the very distinctive placement of this Bornean species at the base of the A clade and paraphyletic to the other species of *Amomum* in this group. More intensive sampling in all of these genera is necessary before formal conclusions about generic boundaries can be drawn.

The A. Maximum Group. This group contains two clusters of species of *Amomum* allied to the genera *Paramomum* and *Elettariopsis*. One cluster contains 10 species of *Amomum* that make up a weakly supported monophyletic group (bootstrap = 61). Species in this group possess an orange and yellow labellum, an entire anther appendage, only a faint odor produced by leaves and fruit, and a slightly elongate infructescence at maturity, and either a fruit of the “Maximum type” or a fruit with shallow ridges, here called the “Sericium type.” The second cluster of species in the A. maximum group contains two species (*A. subcapitatum* and *A. putrescens*) from Guangxi and Yunnan in China to northern Myanmar and are characterized by three to four flowers per bract, non-tubular bracteoles, bracts and bracteoles that quickly decay after anthesis, a trilobed anther appendage, and a nine-winged capsule. Smith (1985) hypothesized that *A. putrescens* belonged to the group of *Amomum* that includes *A. queenslandicum* from Australia. Our results, however, suggest that *A. queenslandicum* is placed in the first cluster of species while *A. putrescens* is in a well-supported clade (bootstrap = 92) with *A. subcapitatum*. Fruits of both *A. subcapitatum* and *A. putrescens* are 7–9-winged, here called the “Maximum type.” Although capsule morphology is an important diagnostic feature in *Amomum*, the use of fruit characters for identification purposes is often impractical because the fruit type is unknown in most species and only rarely recorded on herbarium specimens.

Paramomum and Elettariopsis. The monotypic *Paramomum* is endemic to Yunnan. Tong (1985) suggested that *Paramomum* is related to the genus *Costus* L. (Costaceae) based on its supposed spiral phyllotaxy and petaloid stamens. However, Wu (1997) after the study of additional morphological characters transferred the genus to *Amomum*. Our combined molecular analysis places the single species of *Paramomum* as sister to the genus *Elettariopsis* in clade C with several species of the A. maximum group. Although generic circumscriptions are as yet unclear, we support Kress et al.’s (2002) suggestion that *Paramomum* should be retained as a distinct genus related to *Amomum* and *Elettariopsis*.

Elettariopsis (10 spp.) has been little studied since first described (Baker 1894). Circumscription of the genus remains uncertain and controversial although it has always been considered closely related to *Amomum* (Kiew 1982). Our molecular analyses (including four of the 10 species of *Elettariopsis*) confirm the monophyly of the genus as well as its relationship to *Amomum* and *Paramomum*, thereby supporting the results of Kiew (1982) and Kress et al. (2002).
In summary, the putative phylogenies of subfam. Alpinioideae of the Zingiberaceae obtained from the analyses of the ITS and matK regions show *Amomum* to be polyphyletic. We have identified several groups of species within *Amomum* that do not correspond to any taxonomic groups currently recognized, in particular neither Smith's (1958, 1989) nor Schumann's (1904), infrageneric classification of the genus. We tentatively divide *Amomum* into three groups based on the result of our molecular analyses: 1) the *tsao-ko* clade distinguished by bilobed or trilobed anther-appendages and *tsao-ko* type fruit; 2) the *villosum* grade distinguished by bilobed or trilobed anther appendages, various labellum shapes, an obviously elongate infructescence, and usually *Villosum* type fruits; and 3) the *A. maximum* grade distinguished by an entire anther appendage, a partially elongate infructescence, and *Maximum* or *Sericum* type fruit. The polyphyletic nature of the genus needs to be examined further by adding species of *Amomum* to the molecular analyses, particularly taxa from southeast Asia, as well as other closely related genera of Alpinioideae. With increased sampling, a more complete phylogenetic classification of the genus with possible new generic circumscriptions will be feasible.

ACKNOWLEDGEMENTS. The authors thank Ida Lopez, Mike Borden, Ray Baker, Shoko Saito, and Nian Liu for help with tissue samples; Jiang-Yun Gao for assistance with collection of voucher specimens; and Jing-Ping Liao, Qing-Jun Li, Ai-Zhong Liu, Jie Li, and Cong Li for constructive discussions and comments. This research was supported by the National Key Program for Basic Research of China (2001CCA00300), National Natural Science Foundation of China Grant 3025007, 30170069, and the Smithsonian Institution Department of Botany and the Scholarly Studies Program.

LITERATURE CITED

