Genetic Differentiation and Relationships of Populations in the Cycas balansae Complex (Cycadaceae) and its Conservation Implications

**LONG-QIAN XIAO**1,2 and **XUN GONG**1,†

1Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China and
2Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China

Received: 10 June 2005 Returned for revision: 21 September 2005 Accepted: 18 January 2006 Published electronically: 3 March 2006

- **Background and Aims** The Cycas balansae complex is arguably a controversial group with regard to species delineation. Some taxonomists recognize a single polymorphic species while others distinguish five narrowly defined ones. The unresolved taxonomy has the potential to bring about significant problems for species conservation. Thus, an investigation to examine the genetic diversity and differentiation in the C. balansae complex was performed to determine the relationship of populations and to test whether the morphologically defined segregations represent genetically distinct units.
- **Methods** Inter-simple sequence repeat (ISSR) markers were employed to assess the genetic diversity in the C. balansae complex with a sample of 158 individuals from all extant populations in China.
- **Key Results** ISSR markers revealed low genetic diversity in all populations studied ($H_E$ and $H_O$ averaged 0.0639 and 0.0798 at the population level, respectively). Phenetic analysis showed that the C. balansae complex grouped into five clusters closely corresponding to the narrowly defined C. balansae, C. parvula, C. shiwandashanica, C. tanganii and C. simplicipina.
- **Conclusions** ISSR data suggest that the C. balansae complex has evolved into five genetically distinct units. These might be derived from a relatively widespread common ancestor through multiple vicariant events including geographical isolation resulting from the collision of the Indian plate with the Eurasian plate and from Pleistocene glaciations. In conservation, attention should be paid to each genetic unit.

**Key words:** Conservation, Cycas balansae complex, ISSR, genetic differentiation, genetic units.

**INTRODUCTION**

Knowledge about taxonomy and genetic variation patterns within and between populations are basic requirements in conservation biology (Franke and Soule, 1981). Species circumscription may have a strong impact on the estimate of genetic diversity within a species (Hedrén, 2004), the extent and structure of which is a prerequisite for evaluating their survival ability in a changing environment, and for establishment of conservation practices. With the goal to preserve species evolutionary processes, taxonomic uncertainty could result in negative impacts on biodiversity conservation, such as genetic contamination of local populations during *ex situ* management activities (Moritz, 1994). Furthermore, *ex situ* conservation also requires an advanced understanding of the phylogenetic relationship and distinctiveness of the taxa in order to avoid interspecific hybridization, which is a major threat to the integrity of species as distinct breeding groups (Furman et al., 1997).

Cycads (Cycadaceae, Stangeriaceae, Zamiaceae) are the most primitive living seed plants with over 250 million years of history (Gao and Thomas, 1989; Norstog and Nicholls, 1997; Hill, 2003). Although extremely dominant during the Mesozoic, they are now largely relictual in highly fragmented habitats in the tropics and subtropics. Most cycad species are endangered and face the threat of extinction in the wild (Osborne, 1995). All species of cycads have been listed in the Convention on International Trade in Endangered Species of Wild Fauna and Flora. In China, all cycads have also been given First Grade conservation status. Cycads have recognizable morphological characteristics intermediate between less advanced plants such as ferns and more derived plants including the angiosperms (Brenner, 2003). Efforts must be undertaken to avoid further decline and extinction of cycads, which constitute a key node in plant evolution.

Members of the *Cycas balansae* complex are distributed in south-west China through Yunnan and Guangxi provinces into adjacent northern Indo-China, including Vietnam, Laos and northern Thailand. Their distribution is characterized by their geographically restricted and historically fragmented pattern. Like the *Macrozamia paulii–guillemii* complex (Zamiaceae) (Sharma et al., 1998) and the *Macrozamia plurinervia* complex (Zamiaceae) (Sharma et al., 2004), the plants in the *C. balansae* complex lack distinct morphological characteristics and their taxonomic and phylogenetic relationships are problematic and controversial. Chen and Stevenson (1999) regarded the complex as one species, *C. balansae*, characterized by acaulescence (versus caulescent) caudex and wide (versus narrow) leaflets. However, most researchers recognize five separate species, i.e. *C. parvula*, *C. tanganii*, *C. balansae*, *C. shiwandashanica* and *C. simplicipinnata*, separated by characters such as the number and size of ovules (Wang and Liang, 1996; Huang, 2001). Of these species, *C. parvula* and *C. tanganii* are restricted to south-west China, whereas the others, *C. balansae*, *C. shiwandashanica* and *C. simplicipinnata*, are mainly distributed in northern Indo-China, but with a few populations extending to
south-west China. The choice of taxonomic treatment can profoundly affect not only the number of rare and endemic species within cycads in this region but also the establishment of reasonable and effective conservation strategies. In view of the controversy on the C. balansae complex, morphological information alone is inadequate to evaluate their conservation status. Traditional taxonomy based on morphological characters may unite cryptic species that are morphologically similar but genetically divergent, which could lead to gene contamination in the course of breeding programmes and reintroduction (Hammond, 2001). Taxon-specific molecular markers that measure the degree of differentiation between taxa can serve as a way to overcome the limitations of traditional morphology-based taxonomy (Hahn and Grifo, 1996). Inter-simple sequence repeats (ISSRs) are markers composed of a microsatellite sequence plus a short arbitrary, adjacent sequence primed by a single oligonucleotide. ISSR primers amplify the region between two closely spaced and oppositely oriented simple sequence repeats. ISSR technologies can reproduce physically large numbers of polymorphic fragments at low cost (Fang et al., 1997; Moreno et al., 1998). The literature reveals that ISSR markers have a great potential for inferring genetic relationships among closely related species (Zietkiewicz et al., 1994; Salimath et al., 1995; Fang et al., 1998; Martin and Sanchez-Yelamo, 2000; Benharrat, 2002). ISSR markers have also been used to estimate genetic diversity within and between populations of C. guizhouensis (Xiao et al., 2004). Here ISSRs are used to analyse genetic diversity and differentiation in the C. balansae complex with the goal to understand genetic relationships between populations and their evolutionary history, and whether the morphologically defined segregated species represent genetically distinct units, and to provide information for species conservation.

MATERIALS AND METHODS

Sample collection

Leaf samples were obtained from 158 individuals from eight natural populations representing the five species proposed by Wang (2000) in the C. balansae complex (Table 1). The species were not compared with an outgroup species since the purpose of this investigation was to establish inter-genetic relationships within the complex and not strictly phylogenetic relationships. Fresh leaflets to establish inter-genetic relationships within the complex species since the purpose of this investigation was (Table 1). The species were not compared with an outgroup species since the purpose of this investigation was (Table 1).

DNA extraction, PCR amplification and electrophoresis

Genomic DNA was extracted from leaves of single individuals following the CTAB protocol (Doyle, 1991). Extracted DNA was quantified using a spectrophotometer comparing band intensities with known standards of lambda DNA on 1 % agarose gel. The working solution of DNA (approx. 10 ng µL) was in sterile double-distilled water.

In a preliminary study, 100 ISSR primers, designed by the University of British Columbia (UBC), Vancouver, Canada, were tested in PCR-amplification on a subset of three random individuals. Twelve fragments [USB # 805 (AG)₅T, # 808 (AG)₅C, # 810 (GA)₅T, # 811 (GA)₅C, # 815 (CT)₅G, # 835 (AG)₅YC, # 836 (AG)₅YA, # 840 (GA)₅YT, # 841 (GA)₅YC, # 842 (GA)₅YG, # 843 (CT)₅RA and # 857 (AC)₅YG] were selected for further analysis on all individuals.

DNA amplification was performed in a 20-µL reaction volume containing about 20 ng of template DNA, 2-0 µL 10× PCR buffer, 2-0–2-5 mM MgCl₂, 0-1 mM dNTPs, 2 % formamide, 200 nM primer, 1-0 unit of Taq polymerase and double-distilled water. Amplification was performed in a PTC-100 thermal cycler (MJ Research, Inc.) programmed for an initial step of 1 min at 94 °C, followed by 35 cycles of 30 s at 94 °C, 45 s at 52 °C (or 50 °C) and 1-5 min at 72 °C, and a final 7-min extension at 72 °C. A negative control reaction in which the template DNA was replaced by water was also included to verify for absence of contamination.

Amplification products were electrophoretically separated in 1-5 % agarose gels buffered with 0-5x TBE. A 100-bp DNA ladder (New England Biolabs) was used as size marker. DNA fragments were identified by image analysis software for gel documentation (LabWorks Software Version 3.0; UVP, Upland, CA 91786, USA) following staining with ethidium bromide.

Data analysis

ISSR bands were scored as present or absent. Only those bands that showed consistent amplification were considered. Smeared and weak bands were excluded. The resulting presence/absence data matrix was analysed using POPGENE v. 1.31 (Yeh et al., 1999) to estimate four genetic diversity parameters: percentage of polymorphic loci (P), effective number of alleles (Aₑ), Shannon’s Information index (Hₒ) and Nei’s gene diversity (Hₑ) (Nei, 1973). To examine population genetic structure the proportion of genetic divergence was estimated within and among populations following Nei (1973) and Gₑ as the coefficient of genetic differentiation among the populations. The genetic identity (I) and the genetic distance (D) between populations were also computed using the model presented in Nei (1972). Gene flow estimates (Nm) were calculated as Nm = (1 – Gₑ)/4Gₑ (Slatkin and Barton, 1989). An unweighted pair group method using an arithmetic average (UPGMA) dendrogram was performed on the data matrix of mean character difference between pairs of samples with software Mvsp3.13b (downloaded from the website at http://www.kovcomp.com) and matrix of ISSRs.

An analysis of molecular variance, AMOVA Version 1.5 (Excoffier, 1993), was also used to analyse the proportion of the genetic differentiation among populations.

RESULTS

The 12 primers chosen for final analysis yielded a total of 103 clear ISSR markers. Of those, only 41 markers were
clusters corresponding to the five species, C. tanqingii, C. shiwandashanica, C. balansae, C. simplicipinna, and C. parvula. It also showed that the genetic relationship of the three species, C. balansae, C. shiwandashanica, and C. simplicipinnata, with main distribution in Indo-China, is closer than the other two species in south-west China, C. parvula and C. tanqingii.

**DISCUSSION**

**Genetic diversity**

Walters and Decker-Walters (1991) hypothesized that low within-population genetic variation with relatively high between-population genetic differentiation is a biological and evolutionary characteristic of cycads, a pattern that has been verified by most researchers (Barrett and Kohn, 1991; Ellstrand and Elam, 1993; Xiao et al., 2004). In the present study, every population in the C. balansae complex harbours rather low genetic diversity. This has been ascribed to genetic drift and inbreeding effects due to their small and isolated populations, as well as limited dispersal ability of their large, heavy gravity-dispersed seeds, and beetle-dispersed pollen (Barrett and Kohn, 1991; Ellstrand and Elam, 1993; Xiao et al., 2004). However, the genetic differentiation between populations of different species within the complex presents a striking contrast; $G_{st}$ in C. parvula is 0.0978, whereas it is 0.4003 in C. balansae (no $G_{st}$ values were obtained from the remaining species as they were only represented by a single population each). The difference in distances between populations of either species is postulated to be the main reason for the contrast. Gene flow distance between local populations is 2–7 km in cycads (Yang and Meerow, 1996;
ISSR banding profiles showed that species-specific markers were detected in each defined species as indicated in Fig. 1. The phylogeny relationships between the five species in the *C. balansae* complex have been reconstructed with a set of quantitative morphological traits (Wang and Liang, 1996; Hill and Stevenson, 1998; 1999; Huang, 2001). The UPGMA dendrogram presented here is largely congruent with the phylogeny proposed by Hill and Stevenson, in which, however, *C. parvula* was mistaken as *C. diannanensis*, a widely accepted species with tomentose ovules (versus glabrous ovules in *C. parvula*). *Cycas tanqingii* is hypothesized to have diverged from the others first, followed by *C. parvula*. The species mainly distributed in Indo-China, including *C. simplicipinna*, *C. shiwandashanica* and *C. balansae*, were more closely related to each other.

All investigated individuals in the *C. balansae* complex shared a considerable number of markers (41) indicating that these species form a genetic assemblage. Due to slow reproduction rates (Tang, 1990) and absence of a long-distance dispersal mechanisms for seeds (Bank et al., 2001), it seems reasonable to assume that the species in this complex have been derived from a common ancestor through multiple vicariant events, which arose from geographical isolation resulting from the collision of the Indian plate with the Eurasian plate and from glaciations in the Pleistocene. Morphological cladistics and biogeography indicate that a primary split occurred during cycad evolution between populations in south-west China and those in Indo-China (Hill, 1999) with *C. tanqingii* and *C. parvula* in south-west China separating away from the others species mainly in Indo-China. *Cycas tanqingii* has a characteristic of only two ovules (versus more than two ovules in the remaining species); and *C. parvula* of small ovules (versus big ovules). *Cycas simplicipinna*, which is distributed mainly in northern Indo-China and Thailand, has leaflets that become silvery-grey when dry (as opposed to blackish-brown in the other species). *Cycas balansae* (in north Vietnam) and *C. shiwandashanica* (in north-east Vietnam), which have a sister
relationship, are separated by the Honghe river. *Cycas balansae* has papery leaflets, whereas those of *C. shiwandashanica* are leathery.

**Conservation implications**

Populations and individuals of the *C. balansae* complex appear to have declined dramatically during recent decades. The two principal threats to cycads are (a) severe habitat loss and (b) selective removal from the wild for trade or utilization due to their popularity among horticulturalists. Accordingly, it is essential to take action to preserve the species and their habitats, which includes setting up nature reserves and protection stations, education for cycad protection and strengthening the co-operation between governments in this region on wild cycad conservation management. The pronounced spatial genetic structure suggests that it is necessary to preserve as many populations as possible and that it is not appropriate to preserve only part of populations, since the low genetic diversity in populations implies a reduced ability to survive changing environments and increased susceptibility to diseases in the long term (Ellstrand and Elam, 1993). If methods to enhance genetic diversity, such as transplant programmes and artificial pollination between populations, are required to promote gene exchange and species survival, genetic contamination must be avoided between genetic units.

**ACKNOWLEDGEMENTS**

We thank Drs Xue-Jun Ge and Gang Hao for their help in laboratory work and data analysis, and Dr Mikael Hedrén and two anonymous reviewers for their valuable comments and language correction. This work was supported by the
National Natural Science Foundation of China (30070081) and Yunnan Province Natural Science Foundation (2005C0033Q).

LITERATURE CITED


